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Abstract—Background: Understanding and controlling the im-
pact of change decides about the success or failure of evolving
products. The problem magnifies for start-ups operating with
limited resources. Their usual focus is on Minimum Viable
Product (MVP’s) providing specialized functionality, thus have
little expense available for handling changes. Aims: Change
Impact Analysis (CIA) refers to the identification of source code
files impacted when implementing a change request. We extend
this question to predict not only affected files, but also the effort
needed for implementing the change, and the duration necessary
for that. Method: This study evaluates the performance of three
textual similarity techniques for CIA based on Bag of words in
combination with either topic modeling or file coupling. Results:
The approaches are applied on data from two industrial projects.
The data comes as part of an industrial collaboration project
with Brightsquid, a Canadian start-up company specializing in
secure communication solutions. Performance analysis shows that
combining textual similarity with file coupling improves impact
prediction, resulting in Recall of 67%. Effort and duration
can be predicted with 84% and 72% accuracy using textual
similarity only. Conclusions: The relative effort invested into CIA
for predicting impacted files can be reduced by extending its
applicability to multiple dimensions which include impacted files,
effort, and duration.

Keywords-Change Impact Analysis; Case Study; Software
Repository; Topic Modeling; Bag of Words; Effort estimation

I. INTRODUCTION

Fulfilling software requirements is of paramount importance
to software success. Requirements reflect and capture the
intended goals and objectives of the products. However, one
release does not satisfy all the requirements. More and more
modifications are requested by stakeholders, which appear
in the form of Change Requests (CRs) during the system
development and maintenance process [19]. CRs appears
primarily due to changes in demands, stakeholders, market,
tools and technology [14], [22]. These requests need to be
handled efficiently to minimize software cost and enhance
quality [27]. Better understanding and management of change
requests in start-up companies with market pressure is of
critical importance.

Brightsquid’s Secure Communication Corp. is a global
provider of HIPAA-compliant communication solutions pro-
viding messaging, email, and large file transfer for medical
and dental professionals since 2009. Change request manage-
ment is of core importance in this highly adaptive process.

Often, change requests translates to development activities on
separate repositories.

For a start-up company like Brightsquid, which is operating
with limited resources, creating Minimum Viable Products
(MVP) is a promising pathway to enter the market in shorter
time [15]. MVPs are accelerated products designed to hit the
market quickly, elicit customer feedback and also announce
the presence in the market [24]. In this fast-paced development
environment, one of the vital components is scoping changes
and estimating effort and time needed for that change.

Change Impact Analysis (CIA) is concerned with identify-
ing source code files which will be impacted by implementing
a change request. Textual similarity and file coupling have
been used in CIA, some of the most popular ones are [9], [10],
[16], [18], [26], [28]. Similarly, topic modeling is a widely
used technique in software change analysis [12]. In this study,
we used analogy based reasoning for estimating the scope
of change, effort and time needed to apply the change. We
use textual similarity and topic modeling to define analogy
between change requests. For better predicting the scope of
change (CIA), we used coupling between files in addition to
the textual similarity. While there are many applications of
CIA on open source data, only a few studied such as [1], [8]
are known which report the results from an industrial context.

The objective of this paper is (i) to analyze the performance
of three textual similarity based techniques for CIA in an
industrial context and (ii) to extend the usage of the similarity
models created for (i) to also predict the efforts and duration
of CRs. In total, we consider CIA for predicting impact files
(called CIA(F)), the effort of implementing a CR (called
CIA(E)), and duration of implementing a CR (called CIA(D)).

We analyzed the below research questions:
RQ1: Among the three approaches (i) Bag of words (ii) Bag

of words and topic modeling and (iii) Bag of words and
file coupling, which one works best better for predicting
impacted files by a change request? How the techniques
perform in dependence of the number of similar objects
considered and in dependence of the type of change
request?

RQ2: How well can textual similarity as defined in RQ1 also
be used for predicting effort and duration of implementing
a change request?

Section II describes the industrial collaboration and mo-



tivation for this study. In Section III we describe the case
study design. Section IV and Section V present the key results
and comparison of results to approaches defined in literature
respectively. Section VI and Section VII discuss the lessons
learned and threats to validity.

II. CONTEXT AND MOTIVATION

We conducted this study at the software development unit
of Brightsquid, a growing start-up in the field of health
informatics. Brightsquid provides solutions for clinical com-
munications between doctors, patients, and clinic support staff.
Their core product is Secure-Mail which is a secure
communication and collaboration platform. This platform al-
lows convenient patient care management, sharing results, and
allocate expertise very quickly with thousands of users.

Brightsquid follows agile (Scrum) methodology for software
development. Brightsquid uses GitHub for version control
and Jira for issue management. Their products are imple-
mented, refined and maintained incrementally through multiple
sprints, each of duration two weeks. Software development
at Brightsquid happens in a complex ecosystem. Their core
product is a secure messaging platform which is offered as
the web, desktop and mobile application services. Different
software functionality is implemented across thousands of
files, resulting in a complicated system of interacting entities.

For scoping of the collaboration, we performed a survey
following the structure introduced by Begel and Zimmermann
[6]. The participants were asked to identify the most criti-
cal questions from their perspective, which they would like
answered. We received the response from seven Brightsquid
staff (100% response rate). A total of 21 questions were stated
to be most important for Brightsquid. Using open card sorting
[6], the questions were categorized into “Defects and testing”,
“Productivity”, “Code usage and solubility”, and “Processes
and Standards”. Each question could belong to more than one
of these four categories.

About one fourth of these questions (23.8%) were related
to change request analysis and the subsequent actions:

• What is the general cost of change on this software in
comparison with accepted standard?

• Which generates more test cases, a new feature or a
change request?

• Which leads to more defects: new features or a change
request?

• What’s the impact of change requests and tickets on the
”performance” of the teams for the company?

• How can we find the most important areas of our code
base?

We took a first step toward answering these questions by
applying analogy based reasoning. In this paper, we focused
on studying the extent to which textual similarity can be
used to infer analogy between change requests. We evaluated
the impact of textual similarity on the modified files (change
impact analysis), on the effort (effort estimation by analogy)
and timing (scheduling by analogy).

Figure 1 shows the change management process at Bright-
squid. In each release, a set of change requests is selected by
Product Manager. The project manager assigns each change to
a developer and estimates the time needed to apply the change.
Depending on nature, each request might require changes to
one or multiple files. The files requiring change might be very
different in terms of operation, location, and functionality. One
of the key tasks of the Developer is to analyze the changes
requested and identify which files would require modifications
and the corresponding effort and duration to implement the
change. The identification of files, effort, and duration is
mostly subject to expert knowledge and experience of solving
similar problems. It requires careful navigation and expertise
of the complex interaction of the code entities. Also, due to
the size of the system, it is inefficient, even for experienced
developers to locate the scope of these changes manually. The
dashed box labeled Change Impact Analysis (CIA) in Figure
1, is where a semi-automated solution would be most helpful
towards change identification and implementation.

III. CASE STUDY DESIGN

The overall study process of this paper is outlined in Figure
2. In this section, we describe the major steps of the process.

A. Data Retrieval and Pre-processing

We created a corpus using the summary and description of
the change requests that we mined from Jira. The summary
is a title given to each CR while the description describes the
request in full detail. We analyzed two projects of Brightsquid
called Mail and Dental. Table I summarizes the data
extracted from the repositories. For this paper, projects Mail
and Dental were retrieved and analyzed from Jira. Mail
is a more recent project with active tickets, while Dental is
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an older project in which no new tickets are opened anymore.
The duration of analysis is between July, 2015 to May, 2017.

The Mail project has 1716 change requests between May
2016-2017 and 685 of them are traceable in GitHub repos-
itory. The links between CR and files changed(in GitHub)
are identified by analyzing commit messages, which contains
the CR ID used for establishing traceability. Traceability was
established similar to traditional approaches such as [25]. This
is step 2 of the process outlined (Figure 2). These 656 change
requests impacted 1,227 files overall. Dental project has 648
change requests between July 2015-2016, with 370 of them
being traceable to files changed. These 370 change requests
impacted 1,458 files. For the time duration of each specified
project, #CR under Effort Prediction represent the number of

TABLE I
TIME FRAME AND NUMBER OF JIRA ISSUES FOR FILE, EFFORT, AND

DURATION PREDICTIONS

Data Source Duration File Effort Duration
# CR # CR # CR

Mail May 2016 -
May 2017 685 542 1116

Dental July 2015-
July 2016 370 200 528

change requests for which effort estimations were available
in Jira. Similarly, #CR under Duration Prediction represent
the number of CR for which the duration information was
available.

We took the following steps for pre-processing, the first
step was Basic text cleaning, where we removed the special
characters, hyperlinks, and email addresses. Next, Removing
Stop Words operation was performed, where we removed com-
monly occurring words. Finally, we applied Porter’s stemming
algorithm [23] to put the words in their root dictionary format.

B. Similarity Measure

Cosine similarity is one of the most popular techniques
for measuring the textual similarity between two documents
[3]. It has been applied to a wide spectrum of information
retrieval applications including CIA. We calculated the simi-
larity between two change requests using Cosine Similarity
of their textual content. TF-IDF (term frequency - inverse
term frequency) is a statistical measure used to evaluate the
importance of words in a collection of documents. It consists
of two components, Term Frequency (TF), which is a count of
the number of times a word appears in a document, normalized
by the total number of words in that document. The second
component is the Inverse Document Frequency (IDF) which
is the logarithm of the number of documents in the corpus
divided by the number of documents where the particular term
appears. We used TF-IDF to represent CR in the vector space.

Representing each CR as a vector in vector space, The
similarity S between CRs is calculated as follows:

S(q, d) =
~V (q) · ~V (d)

|~V (q)||~V (d)|
(1)

where q and d are the query and the existing CR, respec-
tively. ~V (q) · ~V (d) represents the dot product of the weighted
vectors with |~V (q)||~V (d)| being their Euclidean norms.

C. Impact Prediction Techniques

This paper analyzes the performance of three techniques
(step 4 of Figure 2), used in different configurations for the
different types of problems. To keep the paper self-contained,
we briefly describe the techniques.

1) Bag of Words (BOW): The base model is the Bag of
Words (BOW), a data representation technique, particularly
used in natural language and information retrieval applications
[21]. BOW represents textual data as multi-set of constituent
words, without their ordering or other attributes. The main
idea of BOW is to construct a knowledge base consisting of
existing changes.

For this model, each CR is represented as a BOW entity
consisting of corresponding CR Summary and Description.
From the data retrieved from repositories the corpus is created,
which reflects the knowledge base against which new change
requests will be evaluated. Using this knowledge base, file
impacts for new change requests are predicted following steps
of Algorithm 1. The algorithm takes as input all change
requests in the knowledge base and the query CR (CRN and



CRq respectively). The query CR represents the new CR,
for which file impact needs to be predicted. The similarity is
calculated between each query and existing CRs. If threshold
T is satisfied, the corresponding CR is marked as similar.
For all available similar CRs SCR found from existing data,
their past file changes, effort and duration (srF , sre, srd
respectively) are added to final results. For a (new) query
change request, output is a list of impacted files, effort and
duration called IF , IE , ID respectively.

Algorithm 1 Bag of Words similarity for File, Duration and
Effort prediction
Input: CRq , CRN in
Output: IF , IE , ID out

1: for i = 1 to N do
2: Calculate S(CRq, CRi) {using equation 1}
3: if (S > TB) then
4: Add CRi to list of similar CRs SCR
5: end if
6: for each element sr ∈ SCR do
7: Add all f ∈ srF to IF
8: Add sre to IE
9: Add srd to ID

10: end for
11: end for
12: return IF , IE , ID

2) BOW & Topic Modeling (BOW & TM): Latent Dirich-
let Allocation (LDA) topic modelling [7] is applied on all
available change request CRN (pre-processed Summary and
Description text) to generate ZK topics, where membership of
topic zk ∈ ZK for change request cri ∈ CRN is θ(cri, zk),
∀i, k : 0 ≤ θ(cri, zk) ≤ 1 and ∀i :

∑k
i θ(CRi, zk) = 1. Based

on experimentation and reviewing literature such as [5], [12],
we applied membership threshold MTP = 0.20, resulting in
each crq belonging to at least one zk of the K topics, where
K = 20.

Next, word topic membership vector ϕK is analyzed for
determining topics. For each word in ϕk, if ϕ(word, zk) is
greater or equal to TTP = 0.80, corresponding word is added
as the topic terms zk. Thus each CR may be assigned to
multiple topics (and associated terms). The information from
these topics is combined with textual similarity data to make
the prediction.

The algorithm takes as input all change requests (textual
content and assigned topic terms), query CR text, query CR
terms (CRTN , CRq CRqT respectively). Query CR represents
the new request, for which file, effort, and duration needs to be
predicted. We calculated the similarity between the query topic
and each of the topics terms. If threshold TM is satisfied, all
files from CRs with the similar topic terms are added to ITM
(Steps 4 to 7). Effort and duration of similar CRs are added
to the final list of impacted effort and duration, IE and ID
respectively. File impact list is generated IBOW using textual
content similarity (same procedure as BOW). The final list of

Algorithm 2 BOW & Topic Modeling similarity for File,
Duration and Effort Prediction
Input: CRq , CRN , CRqT
Output: IF , IE , ID

1: for i = 1 to K do
2: Calculate S(CRqT , CRTiT ) {using equation 1}
3: if (S > TM ) then
4: For each cr with similar topic terms, add to SL
5: end if
6: for each sl ∈ SL do
7: Add all f ∈ slf to ITM
8: end for
9: end for

10: for i = 1 to N do
11: Calculate S(CRq, CRi) {using equation 1}
12: if (S > TB) then
13: Add CRi to list of similar CRs SCR
14: end if
15: for each sr ∈ SCR do
16: Add all f ∈ srf to IBOW
17: Add sre to IE
18: Add srd to ID
19: end for
20: end for
21: IF = IBOW ∩ ITM
22: return IF , IE , ID

impacted files IF is the intersection of IBOW and ITM . Thus,
this technique generates results by considering both textual
content similarity and underlying topic similarity.

3) BOW & File Coupling (BOW & CO): The third tech-
nique for change prediction takes into consideration the cou-
pling information of files. Coupling has been used in some
studies to support CIA [16]–[18]. We integrated the coupling
information with Bag of words. Since this technique only
additionally analyzes file information, it is not used for effort
and duration prediction. The coupling information is generated
using commit history stored in the code repository. We treated
each commit as a separate transaction, and the files which
appear together in a commit are considered to change together.
From the commit analysis, a support matrix Sq×q is generated,
where any matrix entry S(a, b) is defined as:

S(a, b) = N (Fa ∩ Fb) (2)

N (Fa ∩ Fa) is a total number of times files Fa and Fb have
appeared in the same commit, and q is the total number of files
observed. The following is an example of a support matrix
which shows how three files have changed. We can see that
F3 has not changed with F1, changed two times with file F2
and finally, changed seven times by itself.

S =


F1 F2 F3

F1 2 2 0
F2 2 4 6
F3 0 2 7





As using only support value introduces bias [16]–[18], a
confidence matrix Cq×q is generated (by normalizing support
values with total counts of change), where entry C(a, b) is
defined as:

C(a, b) =
S(a, b)

S(a, a)
(3)

where S(a, a) is the total number of times that file a has
changed.

The procedure for generating the impacted file list in this
technique is done by adding the following steps to Algorithm
1. For each file f ∈ sif (step 7), the coupled files are retrieved
from confidence matrix Cq,q . If the corresponding confidence
value for a coupled file is greater than TCO, then it is added
to the final list of impacted files IF .

D. Evaluation Measures

For evaluating the performance of the proposed techniques,
Recall, Precision and F-score are used. They are used measures
in Information Retrieval studies [4].

• Precision P is the ratio of the number of correctly
identified files to the total number of files (relevant and
irrelevant) recommended i.e. retrieved files.

P (CRq) =
#({relevant files} ∩ {retrieved files})

#{retrieved files}
(4)

• Recall R is the ratio of the number of correctly identified
files to the total number of relevant files.

R(CRq) =
#({relevant files} ∩ {retrieved files})

#{relevant files}
(5)

• F-score combines the precision and recall, where the
weights of each depends on the value of β (equation
6). Traditionally F1 scores are mostly used (being the
harmonic mean of precision and recall). However, studies
such as [20], [13] suggest that Recall is more important
than Precision. To reflect that, F2, F5 and F10 measures
are used which assigns greater importance to recall.

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(6)

• Effort & Duration: For duration and effort prediction,
the evaluation needs to be performed differently. Instead
of defining a fixed value as the target attribute, an error
bound E = 25% is set. If the absolute difference be-
tween predicted and actual value (of effort and duration)
is within 25% of the actual value, then the estimate
is considered as a match. The company defined these
tolerance values. From the list of predicted effort and
duration IE , ID from algorithm 1,2, if any one of the
values falls within E, it is considered a match for the
corresponding issue for which the list is generated. The
final evaluation is the percentage of queries (i.e., issues)

for which effort and duration could be correctly predicted
within bound E.

IV. EMPIRICAL RESULTS

We used Leave-One-Out Cross Validation (LOOCV) to
evaluate the performance of the model on predicting impacted
files, effort and duration associated with each change request.
In each iteration, one CR from data set plays the role of a
test case, while the remaining change requests are used for
prediction. The subject of the experiment are the two Jira
projects. The corresponding file changes are captured from the
respective GitHub repositories. If a file has been observed
to change only once in the time span of analysis, then the
corresponding file is omitted from analysis. The assumption
is that, if a file changed only once in this duration, it is unlikely
to change again in the future.

The value of TB and TTM has an inverse relationship
to Precision and Recall. Based on repeated trials and error
experiments, the value of T set to 0.3 presented with the
best trade-off. Similarly, TCO is set at 0.4 for both Dental
and Mail projects respectively. From the results observed,
the answer to the research questions defined earlier is stated
below.

A. RQ1: Among the three approaches (i) Bag of words (BOW)
(ii) Bag of words and topic modeling (BOW & TM) and (iii)
Bag of words and file coupling (BOW & CO), which one works
best better for predicting impacted files by a change request?

We did the experiments separately for each project. The
performance of the three techniques for file impact prediction
is shown in Table II and figures 3 - 5. In the charts, legend
D- and M- denotes results of Dental and Mail projects
respectively. The highest Recall of 0.67 and 0.56 for both
Mail and Dental projects, was achieved with BOW & CO.
This combination always generated the highest Recall values
shown by Figure 3. Further considering F5, F10 values, BOW
& CO also achieved the highest values (Figure 4, 5). Precision
had the highest value of 0.12 with BOW. However, considering
F1 and F2, the highest values (0.17 and 0.24 respectively)

Fig. 3. File impact prediction result - Recall



TABLE II
ACCURACY MEASURE OF FILE CHANGE IMPACT ANALYSIS FOR THE THREE PROPOSED TECHNIQUES APPLIED TO THE MAIL AND DENTAL PROJECTS AND

REPORTED FOR VARYING NUMBER N OF FILE FROM SIMILAR CHANGE REQUESTS.

Technique N MAIL DENTAL
Precision Recall F1 F2 F5 F10 Precision Recall F1 F2 F5 F10

BOW

10 0.11 0.43 0.17 0.27 0.38 0.42 0.12 0.33 0.17 0.24 0.31 0.32
20 0.07 0.54 0.12 0.23 0.43 0.51 0.08 0.40 0.13 0.22 0.35 0.39
30 0.05 0.59 0.10 0.19 0.43 0.54 0.07 0.47 0.12 0.21 0.38 0.44
40 0.04 0.62 0.08 0.17 0.41 0.55 0.06 0.49 0.10 0.19 0.38 0.45
50 0.03 0.64 0.07 0.14 0.38 0.54 0.05 0.53 0.09 0.19 0.39 0.48

BOW & TM

10 0.07 0.28 0.12 0.18 0.26 0.28 0.07 0.17 0.10 0.13 0.16 0.17
20 0.06 0.43 0.10 0.18 0.34 0.40 0.06 0.27 0.09 0.15 0.24 0.26
30 0.04 0.50 0.08 0.16 0.36 0.45 0.05 0.32 0.08 0.15 0.26 0.30
40 0.04 0.54 0.07 0.14 0.36 0.48 0.04 0.39 0.08 0.15 0.30 0.36
50 0.03 0.56 0.06 0.13 0.34 0.48 0.04 0.43 0.08 0.15 0.32 0.39

BOW & CO

10 0.11 0.42 0.17 0.27 0.38 0.41 0.11 0.32 0.17 0.23 0.30 0.32
20 0.07 0.54 0.13 0.24 0.43 0.51 0.09 0.43 0.14 0.24 0.37 0.41
30 0.06 0.61 0.10 0.21 0.44 0.56 0.07 0.47 0.12 0.22 0.39 0.44
40 0.05 0.64 0.08 0.18 0.43 0.57 0.06 0.52 0.11 0.21 0.41 0.49
50 0.04 0.67 0.07 0.16 0.41 0.58 0.06 0.56 0.10 0.20 0.42 0.52

was observed for both BOW and BOW & CO. Although the
precision is 1% in one configuration, it is better in terms of
retrieving the number of impacted files. This is reflected in
the higher Recall values (and subsequent F5 and F10 values).

The results indicate that file impact prediction can be
improved if coupling information is added to the textual
similarity measure. Textual similarity retrieves the important
files in the initial stage. For each of these files, coupling
further provides additional files which are likely to change
with the original files. Coupling threshold restricts files with
lower degree of association to enter the final list.

For the combination BOW & TM, the values are
consistently lower across the board. On average the values
are 6% to 7% less than the highest values obtained. This is
because the grouping of CR is done primarily based on topic
modeling, which has not been able to capture the context of
the experiment correctly. The performance can most likely
be improved if better context and meaning can be introduced
with the topics.

Fig. 4. File impact prediction result - F5

Recall: Combining file coupling with Bag of Words re-
trieved the highest percentage (67%) of impacted files from
the test cases.

In addition to the principal RQ1, two additional sub ques-
tions are formulated and described subsequently.

1) RQ1.1: How the techniques perform in dependence of
the number of similar objects considered?: N controls the
size of the prediction list. E.g., if N = 10, all evaluation
metric will be calculated considering only the first ten files
coming from the similar CRs. Increasing N positively impacts
all the evaluation metric except Precision. If more results are
considered for evaluation, then the size of the observed truth
goes up. Despite increases in the number of matches (indicated
by higher recall values) overall Precision values suffer. This
holds for both Mail and Dental projects and also across all
technique variations.

On the other hand, increasing N increases the Recall, which
is reflected in all higher F-score values. The trend is reflected
in both Mail and Dental projects. As increasing N leads
to more results to be considered, this causes an increased
number of matches. For all the techniques and dataset

Fig. 5. File impact prediction result - F10



Fig. 6. Effort prediction results - Mail & Dental projects

combinations, there is a clear trend that increasing N increase
number of impacted files observed. For increasing values of
N, the inverse relationship between precision and recall is
evident here, and trade-off needs to be made depending on
the scenario. For different experiments, N has been varied
between 10 and 50. For values between N = 30 − 40
the highest F5 and F10 values are observed. The Recall
value is also high in this range of N . This indicates that files
can be relatively well predicted by analyzing top 30-35 results.

Number of similar items(N): Increasing N positively im-
pacts Recall and F-score, but negatively affects Precision.

2) RQ 1.2: How the techniques perform in dependence
of the type of change request?: For determining the effect
of change request type on the file impact results, the same
experiment was run but with the change requests separated
into Bug and Non-Bug. Figure 8 and 9 shows the Recall values
obtained by separating Bug and Non-Bug issues. The red and
blue line indicates the value of F10 obtained by considering
Bug and other CR types separately.

For both Mail and Dental projects, Recall values are
clearly higher for Bug change requests. This indicates Bug
issues are handled with better diligence and the changes
are more systematically logged into the system. Based on
further examination it was found that most CR belonged to
the type Bug. We found 62% and 68% of CR belonged to
this category for Dental and Mail projects respectively.

Change Request Type: Bug type change requests account
for more than 50% of total requests and file prediction
results are better when only Bug type is used.

B. RQ2: How well can textual similarity as defined in RQ1
also be used for predicting effort and duration of implementing
a change request?

Figure 6, 7, show the number of correctly predicted change
requests with respect to duration and effort. The value of
N specifies the number of top similar change requests
considered when making duration and effort predictions.

Fig. 7. Duration prediction results - Mail & Dental projects

Considering duration, the percentage of correctly matched
CR varies between 16% and 72% for Mail project. For the
Dental project duration percentage ranges between 20%
and 71%. Similar analysis for effort estimation reveals that
percentage of correctly classified CR varies between 38%
and 84% for Mail project, 24% and 79% for Dental
projects. Considering the best-observed results, Bag of Words
outperformed Topic model by at about 1% and 6% for
duration and effort prediction respectively.

Duration: Just considering 3 most similar issues, duration
could be predicted for 50% of test cases.

With increasing N there is an upward shift in the prediction
results for both effort and duration. Although experiments
have been up to N = 13, reasonable results can be achieved
by examining top 7 similar change requests (78% and 64%
change requests can be correctly predicted with respect to
effort and duration respectively)

Duration + Effort: Considering Top 7 most similar issues
effort and duration could be predicted for 67% and 64%
of the test cases respectively.

V. LITERATURE REVIEW

In the development domain, maintenance activities usually
initiate with the first delivery of the software [11]. CIA is also
referred as ripple effect analysis [2]. This chapter discusses
some of the CIA literature.

Gethers et al. [16] propose an integrated approach to Impact
Analysis consisting of three components. First, textual descrip-
tions from change request are used to find similar CRs and
software entities (i.e., methods, files, classes, etc.), for generat-
ing a ranked list of impacted methods. Second, the co-changed
pattern is used for creating potential impact sets. Third, execu-
tion traces are made with respect to individual files or features,
representing a hierarchy of executed methods. Kagdi et al.
[18] combine conceptual and evolutionary techniques for CIA
which supports file and method level granularity. Compared
to [16], [18] is different in terms of exclusion of trace data.



TABLE III
PERFORMANCE OF DIFFERENT FILE IMPACT ANALYSIS TECHNIQUES IN LITERATURE (”-” INDICATES UNAVAILABLE NUMBERS).

Cutoff/N 10 20 30 40 50 Data Number of
projectsStudy P R P R P R P R P R

BOW & CO Min 0.11 0.32 0.07 0.43 0.06 0.47 0.05 0.52 0.5 0.32 Industry 2Max 0.11 0.42 0.09 0.54 0.07 0.61 0.06 0.64 0.6 0.42

Borg et al. [8] Min - - - - - - - - Industry 1Max 0.04 40 0.03 40 0.02 40 0.01 40

Gethers et al. [16] Min 0.06 0.06 0.05 0.12 0.04 0.14 0.04 0.18 - - Open source 4Max 0.14 0.37 0.1 0.53 0.08 0.64 0.07 0.75 - -

Kagdi et al. [18] Min 0.01 0.01 0 0.01 0 0.01 0 0.01 0 0.01 Open source 6Max 0.14 0.54 0.1 0.64 0.08 0.7 0.06 0.73 0.05 0.78

Zanjani et al. [28] Min 0.02 0.01 0.02 0.06 - - - - - - Open source 1Max - - - - - - - - - -

Canfora et al. [10] Min 0.05 0.2 - - - - - - - - Open source 3Max 0.2 0.4 - - - - - - - -
Torchiano et al. [26] Average 0.18 0.23 - - - - - - - - Open Source 5
Zimmerman et al. [29] Average - 0.33 - - - - - - - - Open source 8

Zanjani et al. [28] combine interaction information (the file
which has been interacted by developers but not committed)
with version history to derive an IR model. Corpora is created
using comments and identifiers from interacted and committed
source files, commit messages and associated CR descriptions.
Torchiano et al. [26] use an IR technique for change resolution.
The proposed approach constructs corpora of file descriptors
where each entity is described by a combination of comments
in the source code and commit messages. The queries are
generated using combinations of terms appearing in change
request descriptions. Ranking of the files are generated based
on the occurrence of query terms in the corresponding file
comment or commit message data.

Table III show the results observed in literature. The first
row shows the results from this paper. Only BOW & CO is
shown as it had the best results among the three techniques
investigated. In the table, only CIA technique which has been
evaluated using industry data is Borg et al. [8]. However,
the focus of the study was to uncover impact on non-code
entities specifically (in contrast, the focus of this paper is
to uncover impact on files, effort, and duration). All the
other studies are shown in the table concentrate on CIA,
where the objective is to identify the impact on files (on
the underlying methods in the files). They have all been
evaluated on open-source data. In Table III, min and max
reflect the minimum and maximum value observed for any
of the configuration/projects in the study. For some of the
studies, all the data for different thresholds were not available
(indicated by “-”). From the table, it is visible that there
is a big difference in the maximum and minimum values.
The observation is that the performance greatly varies with
the project (data). The data analyzed in these studies share
different properties, characteristics, and trend, as highlighted
in the table. Despite differences with data, from analysis of
Table III two key findings are highlighted. One, comparing
results of BOW & CO with the open source studies, it is
clear that the maximum values attained are very similar. Thus
BOW & CO has similar predictive abilities in terms of file
prediction. Two, as the value of N increases the precision falls

and recall increases. This the same trend that we observed in
our results.

Comparing with Literature: Evaluation values observed
are comparable to those observed in literature, despite
apparent differences in data and application.

VI. LESSONS LEARNED

Collaboration between industry and academia leads to many
findings which are beneficial for both parties. This section
shares the lessons learned both from industrial and academic
perspective. The hope is that these findings might help future
collaborations in similar settings.

Planning & Organization: Comparing to the manual ap-
proach, Vector impact (required effort, duration and file
changes) of change requests make the task of allocating scarce
resources less tedious and error-prone. Various development
activities can be efficiently planned under time and resource
constraints. Essential core-features can be better prioritized
using vector estimations of changes. This is vital for any new
or emerging company like Brightsquid which focus on MVPs.

Customer Satisfaction: For a given change request, com-
pared to manual estimations, vector CIA will help to make
more realistic release decisions. For future releases, this
includes the setting of more realistic proposed feature-set
and release dates. For ongoing maintenance activities, vector
estimates will help to reduce problem fixing times, allowing
for better conformance to service level agreement. All of
these increase the likelihood of achieving customer satisfac-
tion, making it easier for Brightsquid to maintain the market
reputation and instill consumer confidence.

Forecasting Return on Investment: Using effort estimation
data, Brightsquid can more accurately estimate expenses for
different products. Also, duration estimation can help to fore-
cast revenue streams. All of these culminate into a more
predictable analysis of the financial growth and return on
investment over time.

File co-change pattern is valuable: File co-change pattern
is a vital source of information for predicting file changes.
The information is simple to calculate and readily available.



The data can be extracted from any change interval and does
not depend on the CR repository. The positive aspect of using
coupling is reflected from the higher metric values for BOW
& CO method.

Higher recall and lower precision values: Low precision
values are valid not only for this CIA study but also true for
any traceability research. Due to a multitude of reasons, the
primary of which are the points discussed in this section and
also in threats to validity. A vital factor is the size of impact
list N. Increasing N increases the value of recall, as there
will be a greater chance of detecting changes by generating a
larger list; at the expense of added cognitive effort. However,
due to a higher number of false positives, the overall value of
precision goes down. A similar trend is also observed from
the literature.

VII. THREATS TO VALIDITY

This section discusses the threats to validity of the approach
and underlying results, presented in this paper. The following
threats have are highlighted.

Bias on CR type: There is a bias on the types of change
requests logged into the issue management system. By ana-
lyzing both projects, most of the CR belong to one category,
i.e., Bug, which accounted for 60% of the total CR numbers.
For other types of CR, then there will be none or very few
existing instances to compare. Thus the performance may be
negatively impacted.

CR Id for traceability: For linking CR to file changed
and creating the ground truth, CR Id is searched in commit
messages, and subsequent linking takes place. However, some-
times developers mention other CR Ids which are not directly
related to the change but are meant to be used as references. In
such cases the generation of the ground truth becomes biased.

Coupling assumption: A strong assumption of this paper (as
well literature utilizing coupling) is that if two files appear in
the same commit, then are related, i.e., should be coupled.
However, the actual existence of coupling depends on the

Fig. 8. Dental Bug VS Non-Bug issues - file impact prediction

circumstances of change. The presence of two or more files
in the same commit does not always guarantee relation.

Few similar instance from the past: CIA utilize historical
data for impact predictions, will not perform well if no similar
changes are found from history. For example, if for a change
request no or few previous requests are considered, or for a file,
no coupled files are found. For both cases, the performance
will be negatively impacted. This applies to the techniques of
this paper as well any study which has utilized historical data
for prediction.

Traceability is low: CIA methods which utilize past
historical changes, rely heavily on traceability of the changes.
Traceability helps to give meaning to code changes and
use them for impact prediction. However, very few number
of changes are traceable to the code. Roughly only about
one-third of the changes are traceable for Mail and half
changes are traceable for Dental project. Having higher
traceability enhances performance and evaluation.

Traceability: Only about one-third of the change requests
are traceable to the code changes(commits).

Frequency of file is not uniform: We also performed
frequency analysis of the number of times files changed. It
was found that only some of the files changed many times.
Most of the file change only a few number of time. Thus
when change needs to be predicted for a new CR, the files
which change more frequently are more likely to show up in
the sample results. This is one of the prime reasons for lower
precision values.

File Change Frequency: A large number of files change
only a few times.

VIII. CONCLUSIONS & FUTURE WORK

The ability to react and implement change requests is of piv-
otal importance for business success. No silver bullet technique
can be expected to provide high accuracy in the prediction of

Fig. 9. Mail Bug VS Non-Bug issues - file impact prediction



impacted files. We could show that among existing methods,
the combination of similarity-based search applying Bag of
Words in conjunction with utilizing file coupling provides
industrially acceptable solutions. Brightsquid considers the
recommendations as a valuable input for their human decision-
making about which and how many change request should be
handled in which release.

The extension of the similarity-based reasoning on pre-
dicting not only impacted files, but also the duration, and
effort needed to implement the change request, increasing the
efficiency of the method and increases the industrial relevance
of the approach. Both estimates so far were done ad hoc and
manual, resulting in low accuracy. Using the new estimates
almost without additional effort is attractive for Brightsquid’s
project management and supports their strategy of developing
Minimum Viable Products.

Improving the overall prediction results is not exclusively
seen as an algorithmic problem. Instead, it is considered being
related to improving the content, structure and completeness of
data collected. Also, additional CR attributes can be included
in the analysis. Finally, the evaluation has been based on only
the presence or absence of the target file. The position of the
file on the list can be analyzed for evaluating how well the
results appear near the top.
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